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We have performed a molecular dynamics computer simulation of a supercooled binary Lennard-
Jones system in order to compare the dynamical behavior of this system with the predictions of
the idealized version of mode-coupling theory (MCT). By scaling the time ¢ by the temperature
dependent o-relaxation time 7(T'), we find that, in the a-relaxation regime, F(g,t) and Fs(g,t), the
coherent and incoherent intermediate scattering functions, for different temperatures each follow
a g-dependent master curve as a function of scaled time. We show that during the early part of
the o relaxation, which is equivalent to the late part of the 3 relaxation, these master curves are
well approximated by the master curve predicted by MCT for the 3 relaxation. This part is also
fitted well by a power law, the so-called von Schweidler law. We show that the effective exponent
b’ of this power law depends on the wave vector g if g is varied over a large range. The early part
of the S-relaxation regime does not show the critical decay predicted by MCT. The g dependence
of the nonergodicity parameter for Fs(g,t) and F(q,t) is in qualitative agreement with MCT. On
the time scale of the late « relaxation the correlation functions show a Kohlrausch-Williams-Watts
behavior (KWW). The KWW exponent g is significantly different from the effective von Schweidler
exponent b'. At low temperatures the a-relaxation time 7(T') shows a power-law behavior with a
critical temperature that is the same as the one found previously for the diffusion constant [Kob
and Andersen, Phys. Rev. Lett. 73, 1376 (1994)]. The critical exponent of this power law and the
von Schweidler exponent b’ fulfill the connection proposed by MCT between these two quantities.
We also show that the g-dependent relaxation times extracted from the correlation functions are in
accordance with the a-scale universality proposed by MCT. The dynamic susceptibility x”(w) data
for different temperatures also fall on a master curve when frequency is scaled by the location of
the minimum between the microscopic peak and the a peak and X" is scaled by its value at this
minimum. The low frequency part of this master curve can be fitted well with a functional form
predicted by MCT. However, the optimal value for the exponent parameter from this fit does not
agree with the one determined from the corresponding fit in the time domain. The high frequency
part of the master curve of x”(w) cannot be fitted well by the functional forms predicted by MCT,
in accordance with our findings from the time domain. We test various scaling laws predicted by
the theory and find that they are qualitatively correct but that the exponents do not fulfill certain
relations predicted by the theory if they involve the critical exponent a of MCT. This discrepancy
can be rationalized by means of the strong influence of the microscopic dynamics on the 3 relaxation
at early times. Those scaling laws that do not involve the critical exponent a are in qualitative and
quantitative accordance with the theory.

PACS number(s): 61.20.Lc, 61.20.Ja, 64.70.Pf, 51.10.+y

I. INTRODUCTION

OCTOBER 1995

In a recent paper [1] we have reported some of the
results we obtained from a large scale simulation of a
supercooled binary Lennard-Jones mixture. The aim of
this work was to test whether the mode-coupling theory
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(MCT) is able to correctly describe the dynamical behav-
ior of such a system. This theory was originally developed
to describe the dynamics of simple liquids in the super-
cooled state [2,3]. However, in recent years the theory has
also been successfully applied to rationalize the dynamics
of more complex liquids. Despite these successes, there is
still a great deal of controversy on whether the theory is
really able to correctly describe the dynamics of liquids
at low temperatures. The reader can find good introduc-
tions to the theory in some review articles [4,5] and a list
of most relevant references on MCT in [1,4,5]. Recently
also a useful collection of review articles on MCT has
appeared [6].

Since MCT was originally developed for supercooled
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simple liquids various groups performed computer sim-
ulations of such systems in order to investigate whether
MCT gives a correct description of the dynamical behav-
ior of such systems [1,7-15]. The simulations showed that
at low temperatures several features of the dynamical be-
havior of these systems could be rationalized by MCT.
However, many of these simulations had the shortcom-
ing that the systems were not well equilibrated at low
temperatures, i.e., exactly in that range of temperature
where MCT is supposed to apply. Since MCT is an equi-
librium theory it is of utmost importance that at every
temperature investigated the length of the run is suffi-
ciently long to allow the system to equilibrate. Failure
to do so will usually lead to a relaxation behavior that is
quite different from the one observed if the system is in
equilibrium and thus no firm conclusions can be drawn
on whether MCT gives a correct description of the dy-
namics or not. Therefore one of the virtues of the work
in Ref. [1] was to make sure that the system was thor-
oughly equilibrated at all temperatures investigated. A
further important aspect of that work and the one re-
ported here is the fact that many different aspects of
the predictions of MCT are tested in order to investigate
whether the theory is able to give a self-consistent pic-
ture of the dynamics of the system and is therefore more
than a convenient way to analyze the relaxation data.

In Ref. [1] we mainly concentrated on the investiga-
tion of the mean squared displacement of a tagged parti-
cle, the diffusion constant, and the van Hove correlation
function. We showed that at low temperatures the mean
squared displacement showed a plateau in a time range
that extended over several decades in time and could be
identified with the B-relaxation regime (see Sec. II for a
definition of this term) predicted by MCT. At low tem-
peratures the diffusion constant showed a power-law be-
havior, in accordance with the theory. With the help of
the van Hove correlation function we showed that the so-
called cage effect is indeed present at these temperatures.
These correlation functions allowed us also to show that
the factorization property predicted by the theory holds
for this system. Furthermore, we gave evidence that for
this system the so-called hopping processes are not im-
portant in the temperature range we investigated and
that therefore the dynamics of the system can be tested
with the idealized version of the theory, in which such
processes are neglected.

In this work we extend our analysis of the dynami-
cal behavior of our system to the investigation of the
intermediate scattering function and the dynamical sus-
ceptibility. Since several of the predictions of the theory
can most conveniently be tested with these quantities,
this investigation will allow us to perform more exten-
sive tests of the theory and thus help to decide whether
MCT is able to correctly describe the dynamical behavior
of simple supercooled liquids. Some of these results have
been reported already in a previous paper [7] where we
presented the scaling behavior of the incoherent interme-
diate scattering function for a value of the wave vector
q in the vicinity of the maximum of the structure fac-
tor. These results are here extended to a larger range of
values of ¢ and different types of correlation functions.
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The rest of the paper is organized in the following way.
In Sec. II we give a short review of some of the predictions
of the theory in order to facilitate the understanding of
the subsequent tests of the theory presented in this work.
In Sec. III we introduce some of the details of our model
and of our simulation. Section IV is then devoted to
the presentation of our results, which are summarized in
Sec. V.

II. MODE-COUPLING THEORY

In order to facilitate the reading of this paper, we com-
pile in this section some of the predictions of MCT. The
derivation of these predictions can be found in the origi-
nal papers or in review articles [4,5].

Mode-coupling theory attempts to describe the dy-
namics of strongly supercooled liquids at temperatures
slightly above the glass transition temperature 7. In its
simplest version, the so-called idealized MCT, the theory
predicts the existence of a temperature 7, at which the
system undergoes a transition from ergodic behavior to
nonergodic behavior. This means that certain types of
correlation functions, such as, e.g., the intermediate scat-
tering function for wave vector g, F'(g,t), do not decay
to zero even for long times if T < T,. This transition is
predicted to be observable for all time correlation func-
tions (X (0)Y (¢)) between dynamical variables X and Y
for which the overlap with the Fourier transform of the
density fluctuations dp(g) = p(g) — (p(g)) is nonzero, i.e.,
for which (6p(q)X) # 0 and (6p(q)Y) # 0. Here () stands
for the canonical average. The following results are all
of an asymptotic nature in the sense that they are valid
only if e = (T'—T.)/T., the small parameter of the theory,
tends to zero.

The theory also predicts the existence of a parameter
A, the so-called exponent parameter, which is very im-
portant for the quantitative description of the relaxation
behavior (see below for details). This exponent parame-
ter can be computed if the structure factor of the system
is known with sufficient precision, but since this is seldom
the case it is usually treated as an adjustable parameter
for fitting the data.

Consider a normalized time correlation function ¢(t) =
(X(0)Y (t))/(XY') for two dynamical variables X and Y
that have a nonvanishing overlap with §p(q). MCT pre-
dicts that for temperatures just above T, ¢(t) shows a
two step relaxation behavior. Starting with the value of
unity at time zero ¢(¢) is supposed to decay to a value of
fe > 0, the so-called nonergodicity parameter, and then
decay slowly to zero for long times. Thus if ¢(¢) is plotted
versus the logarithm of time, the function quickly decays
from unity on a microscopic time scale, then slowly de-
cays to a plateau of height f., and finally slowly decays to
zero. In the language of MCT the time range for which
¢(t) is close to this plateau is called the 8 regime and
the time range that starts with the correlators beginning
to deviate from this plateau and that extends to infi-
nite time is called the o regime. Two things should be
noted in order to avoid getting confused. The first is that
the B-relaxation regime of MCT should not be confused
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with the 3 relaxation as it has been introduced by Johari
and Goldstein [16], since the latter is a peak in the spec-
trum whereas the former corresponds to a minimum in
the spectrum. The second thing to note is that the late
part of the 3 regime overlaps with the early part of the a
regime. Thus the two regimes should not be considered
as completely unrelated relaxation regimes.

For times in the [-relaxation regime MCT predicts
that the correlator ¢(t) can be written in the following
form:

é(t) = fe + hG(t). (1)
Here f. is the above mentioned nonergodicity parameter
and h is a positive amplitude factor. Both quantities
will depend on the nature of ¢, e.g., they will depend
on the wave vector q if ¢ is the intermediate scattering
function, but not on temperature 7" or time ¢t. The whole
temperature and time dependence of the right hand side
of Eq. (1) is given by the function G(t). This function is
predicted by MCT to be of the form

G(t) = v/]elg(t/tc), (2)

where € is the small parameter of the theory introduced
above and t. is the time scale of the 3 relaxation. This
time scale is predicted to show a power-law dependence
on T with a divergence at T = T:

te ~ (T — Te)~1/22 (3)

where the quantity a can be computed from the exponent
parameter A (see below). If A is known, the function
g(t/te) in Eq. (2) can be computed explicitly. It has
been shown analytically that, for times much larger than
the microscopic times to but less than ¢, g(t) is a power
law, in this context often called the critical decay, i.e., it
is of the form

g9(t/te) = (t/1)%

Here the exponent a, often also called the critical expo-
nent, is the same quantity that appeared in Eq. (3).

For times t that are larger than t. but much smaller
than the a-relaxation time 7, g(t/tc) is predicted to be
also a power law, which in this context is usually called
the von Schweidler law, i.e.,

g(t/te) = —B(t/t.)",

Here the prefactor B and the exponent b, the so-called
von Schweidler exponent, can also be computed when
the exponent parameter A is known. In particular, MCT
predicts that the exponent a of the critical decay and the
von Schweidler exponent b are related to the exponent
parameter via

_ T -a)p _ [ra+b)? ©)
I'(1—2a) r'(1+2p) °

to < t < t.. (4)

te <t T (5)

A

where I'(x) is the I function.
For times on the time scale of the a-relaxation regime
MCT predicts that the correlator ¢(t) obeys the so-called
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time-temperature superposition principle. This means
that correlators for different temperatures (all close to T,
of course) will fall onto a master curve if time is scaled
by the a-relaxation time T, i.e.,

¢(t) = F(t/7(T))- (7)

For the late a-relaxation regime the master function
F(t/T) is predicted to be well approximated by a
Kohlrausch-Williams-Watts (KWW) function, often also
called stretched exponential, i.e.,

¢(t) ~ Aexp [—(t/7)°], (8)

and recently it has been shown that if ¢(t) is the inter-
mediate scattering function for wave vector ¢ of a simple
liquid Eq. (8) becomes exact for large values of ¢ [17,18].
The a-relaxation time 7 will in general depend on the
specific nature of ¢, e.g., on the wave vector ¢ if ¢ is the
intermediate scattering function F'(g,t). However, MCT
predicts that the relaxation times of all correlators should
show a divergent behavior near T, in the form of a power
law with an exponent v that is independent of the type
of correlator studied. Thus the relaxation time of the in-
termediate scattering function F'(g,t) is predicted to be
of the form

7(q) =C(q)(T —Tc)™". (9)

Here C(q) is a smooth function of temperature. Thus in
the vicinity of T, the main dependence of 7 on tempera-
ture is given by the power-law behavior in Eq. (9). This
property is called the a-scale universality. The exponent
v in Eq. (9) can be computed once A is known by means
of

(10)

where a and b are the two exponents from Eq. (6).

By making use of Egs. (1)—(3), (5), and (9) it is simple
to show that on the time scale of the late (-relaxation
regime, i.e., the time scale for which the von Schweidler
law in Eq. (5) is predicted to hold, the von Schweidler
law can also be written as follows:

(ﬁ(t) = fe— hB(t/T)b ’ (11)

where h and B are the temperature-independent con-
stants of Egs. (1) and (5). Note that MCT predicts that
the exponent b in Egs. (5), (6), (10), and (11) is in general
not the same as the KWW exponent G in Eq. (8). Thus
Eq. (11) is not the short time expansion of the KWW
law in Eq. (8).

If the correlation function ¢(t) is time Fourier trans-
formed and multiplied by the frequency w one obtains
the dynamic susceptibility x”(w). Since ¢(t) is predicted
to show, at temperatures just above T, a two step relax-
ation behavior, x"(w) is predicted to show a double peak
structure at these temperatures. MCT makes predictions
about the following quantities: w,, the frequency at the
minimum between the two peaks; x” = x"(we), the value
of the susceptibility at this minimum; and w,,qz, the fre-
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quency of the peak that occurs at lower frequency (the
so-called a peak). In particular, MCT predicts the two
following power-law dependencies for x” and wyaz on
temperature:

xe ~ (T = Te)*/? (12)

and

Wmaz ™~ 7~ (T - Tc)‘y ) (13)
where we made use of Eq. (9). Making use of Egs. (3)
and (12) it follows that

" a
XE ~ we

(14)

and using Egs. (3), (10), and (13) one can show that

we ~ wf,{t(l‘;"'b). (15)

It should be recognized that Eq. (15) can be derived
from Egs. (3), (10), and (13) even if Eq. (6) does not
hold. This point will be important later when we discuss
our results.

Note that some of these predictions are consequences
of the simplest version of MCT, the so-called idealized
MCT. If thermally activated processes are present, in
this context usually called hopping processes, some of
the above predictions have to be modified. However, in a
previous paper we have given evidence that for our sys-
tem these hopping processes are not important in the
temperature range we investigated [1]. Thus it is appro-
priate to compare the low temperature dynamics of our
system with the idealized version of the theory.

III. MODEL AND SIMULATION

In this paper we give only some of the most impor-
tant details of the model investigated and the essential
features of the simulation. More details can be found in
Ref. [1].

The system considered is a binary mixture of Lennard-
Jones particles. Both types of particles (type A and type
B) have the same mass m. The interaction potential
Vap(r) is given by Vag(r) = 4deap(0ap/7)*? — (0ap/T)°]
(a,8 € {A,B}) with the following set of parameters:
€A = 1.0, €AB = 1.5, €EBB = 0.5, 0Opa4 = 1.0, ogAB = 0.8,
and ogp = 0.88. For computational efficiency these
potentials were truncated and shifted at a distance of
2.50,3. In the following we report all quantities in re-
duced units, i.e., length in units of 044, energy in units
of €4 4, and time in units of (mcrftA/486‘4A)1/2. For argon
these units correspond to a length of 3.4 A, an energy of
120 K kp, and a time of 3 x 10713 s.

The number of A and B particles was 800 and 200,
respectively. The equations of motions were solved with
the velocity form of the Verlet algorithm with a time step
of 0.01 and 0.02 at high (7" > 1.0) and low (T < 1.0) tem-
peratures, respectively. The length of the cubic box was
L = 9.40 44 and periodic boundary conditions were ap-
plied. The system was prepared at a high temperature
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(T = 5.0) and subsequently cooled to lower temperatures
by coupling it to a stochastic heat bath. The tempera-
tures investigated were T' = 5.0, 4.0, 3.0, 2.0, 1.0, 0.8,
0.6, 0.55, 0.50, 0.475, and 0.466. Multiple runs were per-
formed at each temperature, and the correlation func-
tions were averaged. Since MCT assumes the system to
be in equilibrium, great care was taken in order to make
sure that we gave the system enough time to equilibrate
at all temperatures. This was done by allowing the sys-
tem to equilibrate at each temperature for a time that
was longer than the time of the a relaxation. In Ref. [1]
we give strong evidence that the cooling schedule and the
equilibration times are such that the dynamical behavior
observed is really that of an equilibrium system.

IV. RESULTS

In this section we present the results of our simulation.
In the first part we will report our findings about the
intermediate scattering function. This quantity is very
useful in order to test certain kind of predictions of MCT.
However, other predictions of the theory are more easily
tested with the help of the dynamic susceptibility and
therefore we devote the second part of the section to the
investigation of this quantity.

A. Intermediate scattering function

The intermediate scattering function is the space
Fourier transform of the van Hove correlation function
G(r,t) [19]. The latter can be split into two parts, the
self part G,(r,t), and the distinct part G4(r,t). Conse-
quently, there exist also two different types of intermedi-
ate scattering functions: F,(g,t), the incoherent interme-
diate scattering function, which is the Fourier transform
of G4(r,t), and F(q,t), the coherent intermediate scatter-
ing function, which is the Fourier transform of the van
Hove correlation function G(r,t). We computed these
two correlation functions by computing first the ther-
mal average of the van Hove correlation function and
then took the Fourier transform of this function [20]. Al-
though this procedure is formally exact in the thermody-
namic limit it turned out not to be the best way to com-
pute the intermediate scattering function. The problem
is that at low temperatures the distinct part of the van
Hove correlation function does not attain its asymptotic
value, i.e., unity, at the distance L/2, i.e., at the largest
distance accessible in the simulation (L is the length of
the box). This can be seen, e.g., in Fig. 9 of Ref. [1] where
we plot G(r,t) for t = 0. Therefore our computation of
F(q,t) involved taking the Fourier transform of a func-
tion that had a discontinuity at » = L/2 and, as can be
easily shown, this leads to an oscillatory behavior of the
Fourier transform at small values of ¢ with a periodicity
(in ¢) of 4m/L and an amplitude that decays like g71. A
possible solution of this problem would have been to com-
pute the intermediate scattering function from the posi-
tions of the particles and only afterwards do the average
over different configurations; unfortunately, this problem
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was recognized only after the simulations had been per-
formed. However, we believe that the oscillations are only
a minor flaw in the data and in particular do not obscure
the relaxation behavior of the correlation functions.

In Fig. 1 we show the structure factors S(g), given by
F(q,t) at t = 0, versus g for all temperatures investi-
gated. For clarity the curves for the different tempera-

(c) BB
T=0.466

0.5

N e ——
%%ffz_
0.2 WW\—;?ST\“__ :

0.1 ; , , ,

S(a)

FIG. 1. Structure factor S(gq) for all temperatures investi-
gated. For clarity the individual curves have been displaced
vertically by z x n with n = 0,1,2,.... (a) AA correlation,
xz = 0.2; (b) AB correlation, z = 0.1; (c) BB correlation,
z = 0.025.
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tures have been displaced vertically (see figure caption
for details). At low temperatures (top curves) we clearly
see the oscillations mentioned in the previous paragraph.
They are most pronounced for small values of ¢ and
hardly noticeable for large values of q. In the follow-
ing we will mainly concentrate on the range of g that
is between the first maximum and the first minimum
in S(q). As can be recognized from the figure, in this
range the amplitude of the oscillations is small and thus
this effect can probably be neglected. Note that the pro-
nounced increase of S(g) at ¢ — 0 should not be taken as
an indication that fluctuations on a large distance scale
are present but rather reflects the artifacts in the calcu-
lated Fourier transform introduced by the discontinuities
in the calculated van Hove function as mentioned in the
previous paragraph. Since in Ref. [1] we gave evidence
that (1) the system is in equilibrium at all temperatures,
(2) the thermodynamic quantities like pressure, poten-
tial energy, and total energy are a smooth function of
temperature, and (3) these quantities did not show any
drift during the runs it is very improbable that the rise
of S(g) for small values of ¢ is an indication of a phase
separation. Furthermore, also a visual inspection of the
particle configurations excludes this possibility.

We recognize from Fig. 1 that gmaz(T), the location
of the first maximum in S(g), depends only very weakly
on temperature. The same holds for gm,(T), the first
minimum in S(g). In the following we will, among other
things, study the temperature dependence of the corre-
lation functions at ¢ = ¢mar and ¢ = gmin. Since the
temperature dependence of ¢nqr and gmi. is so weak
we will neglect it altogether and fix the values of the
two quantities to their corresponding values at the low-
est temperature. From the same figure we can also see
that at low temperatures the form of S(g) depends only
weakly on temperature. The only thing that changes at
these temperatures is that the height of the peaks and the
depth of the valleys become slightly more pronounced. In
Refs. [1] and [7] we have found that at low temperatures
the relaxation times show a strong temperature depen-
dence. Since we recognize now that this slowing down is
not accompanied by a significant change in the structure
factor we can exclude the possibility that the slowing
down is associated with some sort of divergence of the
correlation length of the pair-correlation function. This
observation is in accordance with the underlying idea of
MCT that the slowing down of the dynamics is a purely
dynamic phenomenon and has nothing to do with some
sort of underlying phase transition. However, one has of
course to keep in mind that the latter possibility is by
no means excluded by our observation of the indepen-
dence of S(q) on temperature, since it may well be that
a different quantity indeed shows a diverging correlation
length.

In Fig. 2 we show the incoherent intermediate scat-
tering function F,(q,t) for all temperatures investigated.
Figures 2(a) and 2(b) are for the A particles with ¢ =
Gmaz = 7.25 and ¢ = gmin = 9.61, respectively, and Figs.
2(c) and 2(d) are for the B particles for ¢ = gmaz = 5.75
and ¢ = @min = 7.06, respectively. We see that for all
temperatures investigated the correlation functions decay
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to zero in the long time limit. This means that the fluc-
tuations that were present at time zero have disappeared
in the time span of the simulation. Thus this is evidence
that the length of the simulation is large enough that
the system can come to equilibrium at all temperatures.
Other evidence for this was presented in Ref. [1].

For short times the correlators show a quadratic de-
pendence on time, which can be understood by remem-
bering that for short times the motion of the particles
is essentially ballistic. For intermediate and long times
the correlators at high temperatures (curves to the left)
show a relaxation behavior that is similar to a simple ex-
ponential decay. This behavior changes when we go to
intermediate temperatures (T = 1.0). There we see that
for intermediate times a small shoulder begins to form.
This temperature is comparable to the one for which the
diffusion constant D and the relaxation times 7 started
to show [1,7] the asymptotic behavior at low temperature
predicted by MCT, i.e., a power law with critical temper-
ature T, and critical exponent ~ [see Eq. (9)]. Thus the
qualitative change in the relaxation behavior of the in-
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=] 0

100 10
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termediate scattering function, e.g., the occurrence of a
shoulder, is accompanied with the onset of the asymp-
totic behavior in D and 7.

When the temperature is lowered even further this
small shoulder becomes more pronounced until we ob-
serve almost a plateau at the lowest temperature. Thus
we find that at low temperatures the correlators exhibit
the two step relaxation phenomenon predicted by MCT.
We also note that at low temperatures the correlators
for the A particles [Figs. 2(a) and 2(b)] show a small
bump for times around 14 time units. A similar phe-
nomenon was observed in a recent computer simulation
of Lewis and Wahnstréom of orthoterphenyl [8]. In that
work evidence was given that this bump is a finite size
effect. A similar bump was also observed in a simulation
of a different Lennard-Jones mixture [9], a simulation of
a molten salt [10], and a simulation of a colloidal sus-
pension [11]. However, no such feature was observed in
simulations with soft spheres [12].

A comparison of the correlators plotted in Fig. 2(a)
with those in Fig. 2(b) [or of Fig. 2(c) with Fig. 2(d)]

® |

= A particles |
Z 9.61 i
LL(/} g=9. -
\‘\\ T=0.466
AN

\ \ \\
\ N\

W\ \ N\
\ \ \ \ N\ \ \\\ |
NN NN AN
10' 10° 10° 10° 10°
t

\t\ \
\

\

\

1 sl !

d
B particles @ L

q=7.06

F.(q.t)

T=5.0

FIG. 2. Incoherent part of the intermediate scattering function F,(g,t) for all temperatures investigated. (a) and (b): A
particles, ¢ = @mae = 7.25 and ¢ = gmin = 9.61, respectively. (c) and (d): B particles, ¢ = gmaz = 5.75 and ¢ = gmin = 7.06,

respectively.
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1.04 . . ' - ' e shows that the height of the plateau as well as the time
= 091 L scale on which the correlator ultimately decays to zero de-
= 0.8 . pend on the value of q. In order to show these two effects
Ll more clearly we show in Fig. 3 F,(g,t) for the A parti-
0.7 1 | cles at T = 0.466, the lowest temperature investigated,
0.6 1 r for values of ¢ in the range 6.0 < q¢ < 14.0. From this
0.5 1 - figure it becomes evident that the height of the plateau
0.4 - L depends strongly on the value of ¢ and that also the re-
0.3 - i laxation time varies by about one order of magnitude in
02 ] Aparticles i this range of g. MCT predicts the quz-a,hta,tlve dependence
: T=0.466 of this height on ¢ and later on we will present the result
0.1 r of our analyses of this dependence in more detail. Also
0.0 1 - o e . o i i the investigation of the dependence of the relaxation time

i0® 10 10" 10 10° 10° 10 10 on q will be postponed for the moment.

t MCT predicts that for low temperatures the corre-
lators should obey the time-temperature superposition
principle in the a-relaxation regime, i.e., show a scal-

FIG. 3. Incoherent intermediate scattering function ing behavior if they are plotted versus rescaled time t/7,

F,(q,t) for the A particles at T' = 0.466. The values of ¢
range from g = 6.0 (top) to ¢ = 14.0 (bottom) and are given
by ¢ = 6.0 +0.36n withn =10,1,2....

where 7(T') is the relaxation time for the a relaxation
[see Eq. (7)]. To test this prediction of the theory we
made such a scaling plot. We defined the a-relaxation
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FIG. 4. Incoherent intermediate scattering function F,(g,t) for all temperatures investigated (solid lines) versus rescaled
time. The dashed curve is a fit with a master curve in the B-relaxation regime proposed by MCT (see text for details). The
dotted curve is a fit with a von Schweidler law and the chained curve is a fit with a KWW law. (a) and (b): A particles,
g = @maz = 7.25 and ¢ = gmin = 9.61, respectively. (c) and (d): B particles, ¢ = gmaz = 5.75 and ¢ = gmin = 7.06, respectively.
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time of a correlator as the time where the correlator has
decayed to e~ ! of its initial value. Note that this kind of
arbitrary definition of the relaxation time makes, within
the framework of MCT, perfect sense since, due to the
time-temperature superposition principle [Eq. (7)], any
definition of a relaxation time that measures the time
scale of the a relaxation is predicted to show the same
temperature dependence. In Fig. 4 we show the incoher-
ent intermediate scattering function F,(g,t) versus this
rescaled time for the A and B particles and for ¢ = gnin
and ¢ = gmaz- From these figures we recognize that at
low temperatures we find indeed a scaling behavior, thus
confirming this prediction of the theory.

MCT predicts the functional form of the master func-
tion G(t) in the B-relaxation regime [see Eq. (2)]. Thus
we tried to fit our master curve with the one predicted
by the theory and the best fit we obtained is included in
the figures as well (dashed line) [21]. The value of the
exponent parameter A that gave the best fit is given in
each figure. We recognize that this fit is very good for
rescaled times in the interval 1072 < ¢/7 < 10°, thus over
a time range spanning about three decades. This time
range corresponds to the late 8 regime which is the same
as the early o regime. From this we conclude that MCT
is able to rationalize the master curve in the mentioned
relaxation regime.

The theory predicts that the exponent parameter is
independent of the type of correlator or the value of gq.
The values of A that we obtained are not all equal, but
instead have a variation of about 5% for the four corre-
lators. Since the statistical uncertainty with which the
fitting procedure can determine any value of A is about
1% we thus find that for our system the exponent param-
eter is not constant. However, it should be remembered
that the prediction of MCT, that A is independent of the
type of correlator or the value of g, is an asymptotic result
of the solutions of equations that are only an approxima-
tion to the original MC equations, i.e., the equations in
which the full ¢ dependence is taken into account. Thus
it can be expected that there will be corrections to these
asymptotic results. Furthermore, the values of A we de-
termined depend to some extent on the time range where
the fit to determine A was done and thus an additional,
systematic, error might be introduced which we estimate
to be of the order of several percent. Thus a small de-
pendence of A on q or the type of correlator should not
be viewed as a failure of the theory.

In order to test this prediction of MCT more exten-
sively we present in Fig. 5 the coherent part of the inter-
mediate scattering function for the AA, the AB, and the
BB correlations. The values of ¢ were chosen to be at the
maximum of the corresponding structure factors. From
this figure we recognize that, in accordance with MCT,
these correlation functions also show a scaling behavior in
the a-relaxation regime. In the late B-relaxation regime
the master curves can again be fitted very well by func-
tional forms predicted by MCT (dashed lines). Thus we
find that this prediction of the theory holds also for these
types of correlation function. The values of the exponent
parameter A for the different correlators are similar to
the ones we presented in Fig. 4. Thus we can conclude
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from these two sets of figures that A is indeed only a weak
function of g for those values of g studied or the type of
correlator investigated.

For times on the time scale of the late (-relaxation
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FIG. 5. Coherent intermediate scattering function F(q,t)
for all temperatures investigated (solid lines) versus rescaled
time. The dashed curve is a fit with a master curve in the
B-relaxation regime proposed by MCT (see text for details).
The dotted curve is a fit with a von Schweidler law and the
chained curve is a fit with a KWW law. (a) AA correlation
for ¢ = @maz = 7.25, (b) AB correlation for ¢ = gmaz = 7.62,
and (c) BB correlation for ¢ = gmaz = 5.75.



4142

regime MCT predicts that the theoretical master func-
tion is given by a power law, the so-called von Schweidler
law [see Eq. (5)]. In previous work we have shown that
the master curve of our data can be fitted very well with
such a functional form [7,13]. In these papers the von
Schweidler exponent b was treated as a fit parameter and
it was found that b depended significantly on neither the
type of correlator nor the value of q. Because of the one-
to-one connection between the von Schweidler exponent
b and the exponent parameter A [see Eq. (6)], this can
be seen as evidence that the exponent parameter is al-
most constant for our system. This observation is there-
fore in accordance with the findings presented here. The
fits with the von Schweidler law are included in Figs. 4
and 5 as well, and we recognize that in the region where
the theoretical master curve of MCT is fitting the data
well the von Schweidler law does so too. Thus we can
conclude that for our system the power law is a good
approximation to the theoretical master curve for the
whole time range of the late 3 relaxation and not only
very close to the plateau as might be expected a priori
from the asymptotic nature of the von Schweidler law.
Since we have determined the exponent parameter for
each of the correlation functions shown, we can compute
the von Schweidler exponent b by means of Eq. (6) and
compare it with the result from fitting only the power
law. In order to distinguish these two quantities we will
denote the latter by b’. The values of these quantities are
given in Figs. 4 and 5. We find that b and ' are usually
very close to each other and can be taken essentially to
be equal. Therefore we will report in the following only
the value of the von Schweidler exponent as determined
from the power-law fit.

For times belonging to the late part of the a-relaxation
regime, one can show that the master function predicted
by MCT is well approximated by a Kohlrausch-Williams-
Watts law [see Eq. (8)]. We have tried to fit this part
of the master curve of our data with such a functional
form and the result is included in Figs. 4 and 5 as well.
Although it is not clearly seen in figures on this scale,
these fits are very good at low temperatures and long
times and therefore we can conclude that this prediction
of the theory holds too. Note that the values of the KWW
exponents (3 are significantly different from the ones of
the von Schweidler exponent &’. Thus it is not the case
that the von Schweidler law can be considered as the
short time expansion of the KWW law. One might be
tempted to try to fit the whole master curve with a KWW
law, i.e., the whole a-relaxation regime. However, we
found that such a fit is not convincing at all and can
therefore be ruled out.

Besides the von Schweidler law, which MCT predicts
to be present for the late §-relaxation regime, the theory
also predicts that the correlation functions should show
a power law, the so-called critical decay, also when ap-
proaching the plateau [see Eq. (4)]. We have thus tried
to fit the data in the early 3-relaxation regime with such
a functional form but were not able to find any sign of
the presence of such a relaxation behavior in this time
regime. Inspection of Figs. 4 and 5 shows that this ap-
parent absence of the critical decay is probably due to the

WALTER KOB AND HANS C. ANDERSEN 52

fact that on the time scale at which the critical decay is
supposed to be present the correlators seem to be still
strongly influenced by the relaxation behavior at short
times, where the dynamics is essentially ballistic. This
influence will thus make the detection of a critical decay
very difficult. We will come back to this point in the next
section when we discuss the dynamic susceptibility.

It is interesting to compare our results with the ones
that Bengtzelius obtained from a numerical integration of
the mode-coupling equations for a monatomic Lennard-
Jones system [22]. These results were later improved by
Smolej and Hahn [23]. By taking into account essen-
tially the full ¢ dependence of the structure factor and
also making a reasonable modeling of the short time dy-
namics of this system, these authors obtained the full
time dependence of the intermediate scattering function.
Their results show that the correlation functions are qual-
itatively very similar to the ones presented in this work.
In particular they also show that in the time domain the
critical decay is hardly noticeable if the system is not very
close to the critical point. In Refs. [1] and [7] we have
shown that at the lowest temperature we investigate in
this simulation € = (T' — T,)/T. is about 0.07. In order
to compare this value of € to the ones studied in Ref. [22]
one has to remember that Bengtzelius varied the density
of the system and not the temperature, as we have done
in this work. Thus in the work of Bengtzelius we have
€ = (n.—mn)/n., where n is the particle density. Thus the
meaning of the small parameter € in his and our work is
clearly not the same. However, we can compare the relax-
ation behavior of the incoherent part of the intermediate
scattering function F(g,t) for g close to the first peak in
the structure factor, presented in Fig. 3 of Ref. [22], with
the corresponding result of our work. [In Fig. 2(a) we
show the relaxation behavior of F,(g,t) which is quali-
tatively very similar to that of F'(g,t).] From this com-
parison we conclude that the relaxation behavior at our
lowest temperature (¢ = 0.07) corresponds to a value of
€ of about 0.0023 in the work of Bengtzelius (curve C
of Fig. 3 in Ref. [22]). Smolej and Hahn have shown
that in the monatomic Lennard-Jones system the criti-
cal decay can be observed only for |e| ~ 0.00042; thus
about a factor of 5 (=0.0023/0.000 42) smaller than the
ones accessible in our simulation. Thus if we also take
into account that our correlators have a certain amount
of noise it is very reasonable that the critical decay be-
comes completely obscured. Thus we conclude that, for
this system and the temperature range investigated, the
critical decay is either not present at all or not detectable
with data of the accuracy we are able to obtain.

We turn now our attention to the nonergodicity pa-
rameter f.. As we already noted in Fig. 3, f. depends
on q. MCT predicts that for the incoherent intermediate
scattering function the nonergodicity parameter shows a
Gaussian-like behavior as a function of g. For the co-
herent intermediate scattering function f, is predicted to
show an oscillatory behavior with oscillations that are in
phase with the structure factor S(g). In order to test
these predictions we fitted the correlators F,(g,t) and
F(q,t) at the lowest temperature investigated with a von
Schweidler law and used the offset as an approximation to



the nonergodicity parameter. The quality of this approx-
imation was tested for the cases presented in Figs. 4 and
5 in that we compared the offset we obtained from the
power-law fit with the nonergodicity parameter we ob-
tained when we fitted the full theoretical master curve.
In most cases investigated the difference between the two
quantities was less than 1% and thus this approximation
should be of sufficient accuracy.

In Fig. 6 we show the ¢ dependence of the nonergod-
icity parameters f. for the incoherent and coherent in-
termediate scattering function for the A particles. From
this figure we recognize that the f. for the incoherent
part shows indeed a Gaussian-like behavior (upper dot-
ted curve). The nonergodicity parameter of the coherent
part (upper solid curve) shows an oscillatory behavior
that is in phase with the structure factor S(g) (dashed
curve). Also the relative magnitude of the two curves is
very similar to the one predicted by MCT [2]. Thus we
conclude that the prediction of MCT concerning the g
dependence of the nonergodicity parameter of the inter-
mediate scattering function is in qualitative accordance
with our data. A similar accordance with this prediction
of the theory was reported also from scattering experi-
ments [24] and another computer simulation [14].

Also included in the figure are the amplitudes A of the
KWW law we fitted at long times for the incoherent in-
termediate scattering function (lower dotted curve) and
the coherent one (lower solid curve). We recognize that
these amplitudes show qualitatively the same behavior
as the nonergodicity parameters and can thus serve as
a first approximation to it. However, we also note that
both KWW amplitudes are always smaller that the cor-
responding nonergodicity parameters. Thus this is evi-
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FIG. 6. Nonergodicity parameter f. for the incoherent (A
particles) and coherent (AA correlation) intermediate scat-
tering function (upper dotted line and upper solid line, re-
spectively). The lower solid line and lower dotted line are
the amplitudes of a KWW fit at long times to the same in-
coherent and coherent intermediate scattering function. The
dashed line is the structure factor S(q) for the AA correlation
divided by 2.0.
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dence that the KWW law which fits the data well on the
time scale of the late a relaxation does not fit the data
well on the time scale of the early a relaxation.

MCT predicts that the exponent parameter depends
only on the structure factor at the transition. From this
it follows that the von Schweidler exponent b is indepen-
dent of the correlator studied, since the two quantities
are related by means of Eq. (6). In Figs. 4 and 5 we gave
evidence that the exponent parameter A does not depend
strongly on the type of correlator or the value of g. In
order to make a more systematic test of this prediction
of MCT we determined the von Schweidler exponent b’
for various correlation functions and varied g over a large
range. Similarly to the nonergodicity parameter, ' was
determined by means of a power-law fit to the correlators
at the lowest temperature. The range in time for which
this fit was good was about three orders of magnitude for
small values of ¢ and about two orders of magnitudes for
large values of ¢ and we were able to determine b’ with
an absolute accuracy of about 0.02. Note that the von
Schweidler exponent determined in this way is an effec-
tive von Schweidler exponent, since the fit was done by
trying to fit the power-law to the data over a time in-
terval which was as large as possible. Thus it might be
that if one restricted the time range over which the fit
was done to a smaller interval the value of the exponent
would change. However, since the fits were usually quite
good over several orders of magnitude in time, a restric-
tion of the time interval would probably not lead to very
different values for the exponent.

In Fig. 7 we plot the effective von Schweidler exponent
b’, determined in the way explained above, versus g for
the incoherent intermediate scattering function for the A
and B particles as well as for the coherent one for the
AA, AB, and BB correlations. From this figure we rec-
ognize that the effective von Schweidler exponent for the

FIG. 7. Effective von Schweidler exponent b', as deter-
mined from a power-law fit, versus ¢ for the incoherent inter-
mediate scattering function for the A and B particles (curves
A and B, respectively) and for the coherent intermediates
scattering function for the AA, AB, and BB correlations
(curves AA, AB, and BB).
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incoherent function decreases with increasing q. For the
coherent function, AA and BB correlations, b’ shows also
a general trend to decrease but we see in addition some
oscillations which are in phase with the structure factor
(see Fig. 1). For the AB correlation b’ also shows the
trend to decrease but the peaks in the curve cannot be
assigned to maxima in the corresponding structure fac-
tor. We see that for ¢ in the range shown in the figure the
variation of b’ between the different curves is quite appre-
ciable and also the systematic dependence on gq is clearly
visible. At first glance this seems to be in contradiction
with our previous findings in which we reported only a
weak dependency of b’ on g (see, e.g., Fig. 4 in Ref. [7] or
the results presented in Figs. 4 and 5). However, it should
be noted that in Ref. [7] we focused on the dependency
of b’ for the incoherent part of the A particles only in the
range of ¢ between 6.5 < ¢ < 9.6, i.e., the range from
about gmaz tO ¢min- We see from Fig. 7 that in this rela-
tively small range the value of &’ indeed does not change
a lot and can thus be considered to be almost constant.
Only if the von Schweidler exponent is measured over a
much larger interval of g is its dependence on g revealed.
If the values of b’ for F,(g,t) of the A and B particles
are read off at ¢ = @maz, Where ¢q. is the location of
the maximum in the corresponding structure factor, we
find that these values are quite close together. This is
in accordance with the finding presented in the context
of Figs. 4 and 5. Thus we draw the conclusion from this
figure that this effective von Schweidler exponent b’ de-
pends on g, but that its value at the maximum of the
corresponding structure factor is almost independent of
the type of correlator.

In Fig. 4 of Ref. [7] we presented a graph in which
we plotted F;(g,t) for the A particles versus tb', where
b’ was the effective von Schweidler exponent determined
for ¢ = ¢maz, for values of ¢ ranging from a bit less than
Gmaz to values up to gmin. If F,(g,t) is a power law with
exponent b’ the curves will be straight lines. With this
plot we gave evidence that the von Schweidler exponent
was essentially independent of ¢ in this range of gq. Since
we find now that, if ¢ is varied over a larger range, the
effective von Schweidler exponent is dependent on g we
tried to test if it is possible to describe at least part of the
late O-relaxation regime with a von Schweidler law with
an exponent that is independent of g. MCT predicts that
the time range in which the von Schweidler law, with a g¢-
independent exponent, holds should depend on ¢q. Thus
it might be that the fitting procedure described above
might make use of data over too large a range in time and
thus extract an effective exponent b’ that is significantly
different from the real von Schweidler exponent b. Thus
we tried to plot F,(g,t) for the A particles for g in the
range 2.0 < q¢ < 24.0 versus t°4°, Here the exponent
b’ = 0.49 stems from our fit for ¢ = gma. [see Fig. 4(a)].
Unfortunately the resulting plot was not very useful to
decide whether a constant value of &’ is compatible with
the data or not, since noise in the data prevented us from
determining reliably those parts of the individual curves
where they are straight lines. Only in the range between
Gmaz and @min, Was the statistics good enough to identify
clearly the time range where a straight line was present
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and this result was already presented in Ref. [7]. Thus
the only conclusion we can draw at the moment is that
the exponent of the power law, if fitted over a time range
as large as possible, is indeed dependent on q. If there
does exist a g-dependent time range in which a power law
with a constant value of b’ fits the data well, this range
is not observable within the accuracy of our data, except
for q between ¢nar and gmin.

As already mentioned in the discussion of Figs. 4 and 5
the von Schweidler exponent ' and the KWW exponent
[ are significantly different for the correlators discussed
in these figures. In order to investigate this effect in
more detail we show in Fig. 8 the ¢ dependence of b’
and S for the A particles. We clearly recognize that b’ is
significantly smaller than g for all values of g. Thus this is
further evidence that the functional form appropriate to
describe the data on the time scale of the late a relaxation
is not appropriate to describe the data on the time scale
of the late 3 relaxation.

Also included in the figure is the KWW exponent 3 for
the B particles. The general behavior of this curve is very
similar to the one for the A particles except that for a
given g the values of 3 for the B particles is a bit smaller
that the one for the A particles. This is in accordance
with the prediction of MCT for a binary mixture of soft
spheres [18], namely, that the relaxation of F,(q,t) is
more stretched for the small particles than that for the
large particles.

We see in Fig. 8 that for large values of q¢ 3 for the
A particles is constant to within the noise. We have
observed a similar effect in the case of the 3 determined
from F(q,t) for the AA correlation but not in the case
of F,(q,t) (also included in Fig. 8) and F(q,t) for the B
particles and BB correlation, respectively. MCT predicts
that for large values of ¢ the KWW exponent should
approach b as a limiting value [17,18]. From the figure
one recognizes that unfortunately the quality of our data
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FIG. 8. KWW exponent 3 determined from the incoherent
intermediate scattering function for the A and B particles
and the effective von Schweidler exponent b’ for the same
correlator for the A particles.



52 TESTING MODE-COUPLING THEORY FOR ... . II. ...

is insufficient to test this prediction of the theory.

We now investigate the temperature dependence of 7,
the relaxation time of the a relaxation [see Eq. (9)]. In
Ref. [7] we showed that for low temperatures the re-
laxation time of F,(q,t) for the A and B particles for
4 = Qmaz shows a power-law dependence on tempera-
ture, (T —T.)~7, with a critical temperature T, = 0.432,
which is very close to the one we found for the diffusion
constant, which was T, = 0.435. In Fig. 9 we show the
relaxation times versus T' — T, for the following correla-
tion functions: F,(q,t) for the A and B particles (squares
and triangles pointing down, respectively) at ¢ = gmas
and ¢ = @min (of the corresponding structure factors),
F(q,t) for the AA and BB correlation (circles and di-
amonds, respectively) at ¢ = gmaz and ¢ = @min, and
F(q,t) for the AB correlation (triangles pointing up and
star) for ¢ = ¢min1, ¢ = Qmaz, 30d ¢ = @min2. In each
case the filled and open symbols correspond to ¢ = ¢mas
and ¢ = @min, respectively and the star is for ¢ = gnin2-
The last three values of q are the location of the first min-
imum, the first maximum, and the second minimum in
S(g) for the AB correlation [see Fig. 1(b)] and have the
values 6.40, 7.72, and 12.05. From Fig. 9 we recognize
that at low temperatures the various relaxation times can
all be fitted well by a power law with the same critical
temperature T, = 0.430. Thus the critical temperature
for all correlators shown in this figure is very close to the
one we found for the diffusion constant of the A and B
particles, thus giving evidence that at this temperature
the system becomes nonergodic. This transition from

FIG. 9. Relaxation time 7 versus temperature for vari-
ous correlators. Squares and triangles pointing downwards:
F,(q,t) for A and B particles, respectively. Circles and dia-
monds: F(q,t) for AA and BB correlation, respectively. Tri-
angles pointing upwards and stars: F(q,t) for AB correlation.
Filled and open symbols are for ¢ = gma= and ¢ = gmin, Te-
spectively. Solid line: power law with exponent 2.6.
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an ergodic to nonergodic behavior can of course only be
expected if the hopping processes will not restore the er-
godic behavior of the system. We have given evidence
above that in the temperature interval investigated in
this work these hopping processes are not present. How-
ever, it may very well be that for temperatures even closer
to T, the dynamics of the system is influenced by the hop-
ping processes and thus no real transition to a nonergodic
behavior will be observed.

The critical exponent v with which the various relax-
ation times diverge at T, is found to be essentially inde-
pendent of the type of correlation function, in accordance
with MCT. Its value is around 2.6, which is essentially
the same as the exponent predicted by the theory if one
uses the connection between v and the von Schweidler
exponent b and a value of b of 0.51 (leading to v = 2.7)
which was found for b from F,(g,t) for the A particles
close t0 gmaz (see Fig. 4).

We also note that in Ref. [1] we showed that at low tem-
peratures the diffusion constant for the A and B particles
were better fitted by a power law than by a Vogel-Fulcher
law. We tried to fit the relaxation times presented in
Fig. 9 also with a Vogel-Fulcher law and found that for
these quantities the Vogel-Fulcher law was able to make
a good fit which covered a slightly larger temperature
range than the power law presented in Fig. 9 is able to
do. Thus from the point of view of a mere fitting function
the Vogel-Fulcher law has to be preferred for this data.
However, this should not be taken as an argument for not
using a power law to fit the data to extract an exponent
for comparison with other exponents. The objective of
the present work is to test whether MCT is able to give a
consistent picture of the whole variety of data on the low
temperature dynamics of the system. The fact that one
subset of the data can be better described by a functional
form not compatible with the theory should not be seen
as evidence against the validity of the theory.

From Fig. 9 we also recognize that the relaxation times
for the various correlation functions depends strongly on
the correlator. In particular, we see that at the lowest
temperature we find a variation of about a factor of 7 for
the 7 of the various correlation functions presented here.
In this context it is interesting to test another prediction
of MCT, the so-called a-scale universality [see Eq. (9)].
In order to do this we defined a new relaxation time 7/
by requiring that at time 7/ the correlator has decayed to
0.15. The reason for this definition is that with the old
definition, for which the correlator is supposed to have
decayed to e~! = 0.368, the relaxation times 7 do not
measure the a-relaxation time if g is large, since for large
values of ¢ the height of the plateau becomes smaller than
0.368 (see Fig. 3).

In Fig. 10 we show the ¢ dependence of 7’/ determined
from F(q,t) for the AA correlation for all temperatures
investigated. From this figure we recognize that at low
temperatures (top curves) the curves corresponding to
different temperatures are just shifted vertically. This is
exactly what is expected if the a-scale universality holds
[see Eq. (9)]. Thus at low temperature the ¢ dependence
of each curve is given by C(g) and the vertical shift comes
from the strong temperature dependence of the factor
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FIG. 10. Relaxation time 7’ (see text for its definition)
for the coherent intermediate scattering function for the AA
correlation versus g for all temperatures investigated.
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In the figure we recognize that at low temperature the
individual curves show quite a few minima and maxima.
Some of them can be identified with the minima and
maxima in the structure factor S(q) [see Fig. 1(a)]. The
other extrema can be traced back to the little oscilla-
tions in the structure factor, which we said was a finite
size effect. Thus these other extrema in Fig. 10 should
presumably also be considered to be a finite size effect.
It is remarkable that the ¢ dependence of the relaxation
time found here is qualitatively similar to the one pre-
dicted by MCT [18] showing that also this aspect of the
theory seems to be, at least qualitatively, correct. A sim-
ilar agreement is observed for the relaxation times of the
incoherent intermediate scattering function.

Note that the ratio of the relaxation time at q =
Gmaz = 7.25 and at ¢ = 16, the second minimum in
S(g), is about 50. Thus this shows even more dramati-
cally than it did in Fig. 9, that the relaxation times are
dependent on ¢q. A similar ¢ dependence was also found
in experiments by Mezei et al. on CKN [25].

B. Dynamic susceptibility

In this subsection we test the prediction of MCT for
the imaginary part x”'(w) of the dynamic susceptibility
x(w). This quantity can be obtained by taking the time
Fourier transform of the intermediate scattering function
and multiplying it by the frequency w. Since in this work
the intermediate scattering function extends, at the low-
est temperature, over almost seven decades in time the
computation of the Fourier transform is not a trivial task
and great care has to be taken in order to avoid the gen-
eration of spurious features in x(w), which in turn might
prevent the testing of certain predictions of the theory.
In order to overcome this problem we parametrized the
intermediate scattering function with a spline under ten-
sion [26] and computed the Fourier transform of the latter
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by means of the Filon algorithm [27].

In Fig. 11 we show the dynamic susceptibility x%(g,w)
computed from F,(g,t) for the A particles at ¢ = gmaz
and ¢ = gmin and all temperatures investigated. We rec-
ognize that at high temperatures x% (¢, w) is just a single
peak located at microscopic frequencies. The form of this
peak is approximated very well by a Lorentzian. On low-
ering the temperature this peak starts to split into two
peaks. The first one stays at microscopic frequencies and
the second one moves quickly to small frequencies with
decreasing temperature. Thus we observe nicely how the
a peak separates from the microscopic peak. Note that
this splitting into two peaks looks strikingly similar to the
result of a theoretical calculation with a schematic model
of MCT, as a comparison of Fig. 11 with Fig. 2 of Ref.
[28] shows. Thus the theory is able to describe this ef-
fect at least qualitatively. By comparing Fig. 11(a) with
Fig. 11(b) we recognize that at high temperatures the
height of the microscopic peak does not depend strongly
on g. This is not the case at low temperatures where
this height for ¢ = gnaee is about 30% smaller than the
one for ¢ = gmin. On the other hand, just the opposite
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FIG. 11. Dynamic susceptibility x4 (g,w) for the A parti-
cles versus w and all temperatures investigated. (a) ¢ = @maxz;
(b) qd = qmin.



52 TESTING MODE-COUPLING THEORY FOR ... . II. ...

trend is observed for the height of the a peak, which at
low temperatures is significantly larger for ¢ = gnq, than
for ¢ = gmin- All these observations can be easily under-
stood by remembering that the height f. of the plateau in
the intermediate scattering function depends on ¢. Since
the height of the o peak is proportional to this height
and the height of the microscopic peak is proportional to
1 — f., the above described dependence of the heights of
the a and microscopic peak follows directly from the g
dependence of the nonergodicity parameter f..

From Fig. 11 we also recognize that at low tempera-
tures the shape of the a peak does not depend on temper-
ature. This is the consequence of the time-temperature
superposition principle predicted by MCT, which we
showed to hold very well for this system (see Figs. 4 and
5). In order to investigate this property more closely we
plot in Fig. 12 the dynamic susceptibility for the A par-
ticles for ¢ = ¢naq» scaled by its value at the maximum
versus the scaled frequency w/wmaez, Where wpg, is the
location of the a peak. From this figure we recognize
that the shape of the peak changes when we go from
high to intermediate temperatures. This change seems
to be most pronounced on the high frequency side of
the peak whereas the low frequency side seems to be es-
sentially independent of temperature in the whole range
of temperatures investigated. For intermediate and low
temperatures also the high frequency side of the peak
does not change with temperature. The only change we
observe in the curves when the temperature is lowered
is that the high frequency wing of the peak extends to
higher and higher rescaled frequencies before the curves
turn up again to the microscopic peak. Thus this plot
shows that the time-temperature superposition principle
holds very well for this system.

It is interesting to compare this figure with results from
a depolarized light-scattering experiment on orthoter-
phenyl [29]. Figure 15 of Ref. [29] shows how this type
of plot looks when the time-temperature superposition
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FIG. 12. Dynamic susceptibility x4 (q,w) scaled by Xmaz
for ¢ = @mae for the A particles versus rescaled frequency
w/Wmas for all temperatures investigated.
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principle supposedly does not hold. In that figure the
curves for different temperatures fall also onto a master
curve on the low frequency side of the a peak. However,
on the high frequency side of the peak a clear dependency
of the curves on temperature is observed, in contrast to
our findings presented in Fig. 12.

A more quantitative way to show that the time-
temperature superposition holds for a given correlator
is to measure the full width at half maximum (FWHM)
of the a peak and to investigate the temperature depen-
dence of this quantity. We define the FWHM as the ratio
of the two frequencies at which a horizontal line at half
the height of the peak intersects the low and high fre-
quency wings of the peak. Note that the determination
of the FWHM at intermediate temperatures is not al-
ways possible as can been seen, e.g., from Fig. 12 since
at these temperatures the microscopic and the o peak are
too close together and thus there is no well separated o
peak. We determined the FWHM for those 11 correlators
for which we also presented the relaxation times as a func-
tion of temperature in Fig. 9 and show this quantity as a
function of temperature in Fig. 13. In order to spread the
temperature scale at low temperatures we plot 7' — 0.435
on a logarithmic scale. Note that this representation has
nothing to do with some sort of critical behavior but is
only a convenient way to present the data. The meaning
of the symbols is the same as in Fig. 9. We recognize
that at high temperatures the FWHM is relatively small
for all correlators. It is interesting to note that at these
temperatures the FWHM’s of the correlators for the AB
correlation functions (triangles pointing up and star) are
significantly smaller than the ones of the other correla-
tors. Thus we conclude that at high temperatures the
relaxation behavior for the former, being non-Debye, is
different from the one of the latter, which are of Debye
type.

On lowering the temperature the FWHM increases sig-
nificantly up to 7' = 2.0. For temperatures in the range

FWHM
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FIG. 13. Full width at half maximum of the o peak for
various dynamic susceptibilities (see text). The meaning of
the symbols is the same as in Fig. 9.
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2.0 > T > 0.6 we are not able to measure the FWHM
because of the above mentioned problem. (The only cor-
relator for which we have data even in this temperature
interval has a microscopic peak which is much smaller
that the o peak and therefore does not interfere signif-
icantly with the latter.) For temperatures T' < 0.6 the
FWHM can be considered constant to within the noise
of the data. Thus this is further evidence that the time-
temperature superposition principle holds for all correla-
tors investigated here.

MCT predicts that in the time dependence of the func-
tion G(t) in Eq. (1) only the ratio t/t. enters [see Eq. (2)],
where t. is the time scale of the 3 relaxation. Conse-
quently, the time Fourier transform of G(t/te) will de-
pend only on the ratio w/w,. Thus this prediction can be
tested by scaling the dynamic susceptibility by its value
at the minimum between the a peak and the microscopic
peak and plotting it versus w/w., where we is the loca-
tion of this minimum. We have done this for x7(q,w) for
qd = Qmaz for the A particles. The resulting scaling plot
is shown in Fig. 14 for all those temperatures for which
a minimum could be identified, i.e., T' < 0.8. From this
figure we recognize that in the vicinity of the minimum
the curves indeed fall onto a master curve. Thus the scal-
ing behavior predicted by MCT holds for this correlation
function. We made the same type of scaling plot also for
the other ten correlation functions mentioned above and
found in all cases that at low temperatures they fell onto
a master curve.

Also included in Fig. 14 (dashed line) is a fit with the
time Fourier transform of the theoretical master curve
predicted by MCT for the time Fourier transform of G(t).
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FIG. 14. Solid lines: dynamic susceptibility xj(w) for
g = @ma= for the A particles scaled by its value at the mini-
mum versus frequency scaled by the location of this minimum.
Dashed line: Fit with theoretical master curve from MCT
with exponent parameter ) fixed to the value determined from
the corresponding fit in the time domain [see Fig. 4(a)]. Dot-
ted curve: Fit with the theoretical master curve from MCT
with A as free fit parameter.
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This theoretical curve depends again on the exponent pa-
rameter A which we fixed to the value we found for it
from the fit of the theoretical master curve in the time
domain, i.e., to A = 0.77 (see the discussion in the con-
text of Figs. 4 and 5). This theoretical master curve was
computed by taking into account the first few correction
terms to the so-called interpolation formula [30]. We rec-
ognize from Fig. 14 that for rescaled frequencies to the
right of the minimum the fit with the theoretical master
curve is not good at all. This is another manifestation of
the fact stated earlier that for this system MCT does not
describe well the early part of the [-relaxation regime
(see the discussion in the context of Figs. 4 and 5). A
similar discrepancy between the fit of the spectrum with
master curves proposed by MCT and experimental data
was discussed in Ref. [31] where it was argued that the
reason for this discrepancy was the presence of the so-
called boson peak.

We see from Fig. 14 that the theoretical master curve
does not even give a very satisfactory fit to the master
curve to the left of the minimum, i.e., where the von
Schweidler law should be observed. The deviation of
the theoretical curve from the master curve of the data
should, however, not be considered as a flaw of the theory.
We have shown in Fig. 4(a) that in the time domain the
theoretical curve gives an excellent fit to the master curve
over several decades in time. If we find now that the cor-
responding Fourier transforms do not look very similar to
each other this has to be viewed as an unpleasant prop-
erty of the Fourier transformation. The problem is that
the Fourier transform of the theoretical master curve was
obtained by Fourier transforming a series expansion (in
powers of t/t.) of the theoretical master curve in the time
domain. The dynamic susceptibility from the simulation,
however, was obtained by taking the Fourier transform
of the time correlation function. Therefore the dynamic
susceptibility computed in this way will include in the
vicinity of the minimum also contributions from times
which are not in the (-relaxation regime. Therefore it
cannot be expected that if a theoretical master curve fits
the data well over a certain number of decades in time
then also the corresponding Fourier transform will match
over the same number of decades in frequency. This ef-
fect has also been observed in Ref. [30] where it was found
that the theoretical master curve approximated the solu-
tion of a schematic model [4] well over 5.5 decades in time,
but that the corresponding Fourier transforms matched
only over four decades in frequency.

We also point out that the above mentioned effect
might make the determination of the exponent parame-
ter A from measurements of the susceptibility somewhat
problematic. The difficulty arises from the fact that one
usually tries to obtain a good fit over a frequency inter-
val that is as large as possible. In doing that, one might
severely overestimate the range in frequency for which
the fit with the theoretical master curve is supposed to
hold, which in turn may lead to a wrong value of the ex-
ponent. In order to illustrate this we have tried to make a
fit to the master curve with a theoretical master curve in
which the exponent parameter was a free fit parameter.
The result of this fit is included in Fig. 14 as well (dotted
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line) and we recognize that now the high frequency wing
of the a peak is fitted quite well by the theoretical mas-
ter curve. The value of A we obtained was 0.74. At first
glance the difference of this value from the optimal one
as determined from the time domain (A = 0.78) does not
seem to be large. However, when we used this new value
of A in order to make a fit in the time domain, the re-
sulting fit was significantly inferior to the one presented
in Fig. 4(a). Thus this value of A is not compatible with
the data from the time domain. Hence, if we had access
only to the susceptibility data, we probably would have
determined an incorrect value of A. It has to be empha-
sized, however, that the determination of A from data in
the frequency domain might be much less problematic if
the theoretical master curve gives a good fit on both sides
of the minimum.

Apart from the correlator investigated in the context
of Fig. 14 we tested whether the other ten correlation
functions mentioned earlier also showed a master curve
when scaled in the appropriate way, i.e., by x7 and w,
and found this to be indeed the case. MCT predicts
that these various master curves should be identical, since
they are all related to the time Fourier transform of the
function G(t) [see Eq. (1)], which is predicted to be inde-
pendent of the correlator. In order to check this predic-
tion of the theory we show in Fig. 15 the susceptibilities
at T' = 0.466, the lowest temperature investigated, scaled
by its value at the minimum, versus w/w.. We recognize
from this figure that the overall form of the curves, e.g.,
the height of the a peak or that of the microscopic peak,
for the various correlators is very different and thus this
prediction of the theory is clearly not a trivial one. We
also see that on the left hand side of the minimum most of
the curves follow a master curve and thus the prediction
of the theory is confirmed for these correlators. However,
there are also a few curves which do not fall onto this
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FIG. 15. Dynamic susceptibility x"(q,w) for the 11 corre-
lators investigated (see Fig. 9 for details) scaled by its value
at the minimum versus frequency scaled by the location of
this minimum.
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master curve. These curves are found to be the ones for
which the nonergodicity parameter f. is relatively small,
and thus the ones with values of ¢ which are close to the
first minimum. This part of the master curve, i.e., left
from the minimum, corresponds to the von Schweidler
regime. Moreover, it is known [32] that corrections to
the leading asymptotic results of the theory for the von
Schweidler law are large if the nonergodicity parameter
is small. Thus the deviation of small f. curves from the
master curve can be rationalized within the context of
the theory.

For rescaled frequencies to the right of the minimum
we recognize that the curves seem to cluster around two
different “master” curves. A closer analysis of what type
of correlator belongs to which bunch of curves showed
that the lower bunch of curves all belong to correlators
for the incoherent and coherent part of the intermediate
scattering function of the B particles. Since we are not
aware of any predictions of MCT on the size dependence
of the corrections to this master curve we cannot offer
any reason for this behavior and thus only report the
observation.

Since MCT predicts that at a given temperature the
function G(t) is, for a given system, independent of the
correlator, its time Fourier transform should also be in-
dependent of the correlator. In particular, this means
that the location of the minimum in the susceptibility
should be independent of the correlator as well. In or-
der to test this prediction of the theory we present in
Fig. 16 the susceptibilities for the 11 correlators men-
tioned above for the lowest temperature studied in this
work, i.e., T' = 0.466. From this figure we see that the
form of the various curves depends strongly on the type
of correlator. However, to within the noise of the data
the location of the minimum is independent of the type of
correlator, thus confirming this prediction of the theory.

The theory predicts that xZ, the value of the dynamic
susceptibility at the minimum, should show a square-root
dependence as a function of temperature [see Eq. (12)].

FIG. 16. Dynamic susceptibility x''(¢,w) for various cor-
relators (see text for details) at the lowest temperature
T = 0.466.
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This prediction can easily be tested by plotting (x”)?
versus T'. If the prediction of MCT is correct one should
find straight lines which intersect the temperature axis
at T = T.. We made this plot for the 11 correlators
mentioned earlier and found that the curves were not
straight lines, thus contradicting the prediction of the
theory. We also tested whether a different exponent than
2.0 would lead to straight lines in this type of plot and
found that an exponent around 1.25 was indeed able to
do so. Interestingly enough the extrapolations of the re-
sulting straight lines to lower temperatures intersect the
temperature axis all around the temperature 7' = 0.438,
which is very close to the critical temperatures we found
for the diffusion constant [1,7] or the relaxation times (see
Fig. 9), which wete 0.435 and 0.430, respectively. This
result is presented in Fig. 17, were we plot the x¥(T)
versus T — T, in a double logarithmic way for all the 11
correlators investigated. The solid line is a power law
with exponent 0.8=1/1.25, showing that the slope of the
various curves is close to this value. (If the prediction of
MCT were correct this slope should be 0.5.)

The theory also predicts that we and x” are connected
via a power law and that the exponent is the critical
exponent a from MCT [see Eq. (14)]. In Fig. 18 we show
that x” and w, are indeed related by a power law but that
the exponent is close to unity (solid line) and thus much
larger than the one predicted by MCT for this system
(which, with b =~ 0.49, would be around 0.28). Note
that an exponent of 1.0 is expected if we assume that the
power law seen to the right of the minimum is not the
one predicted by MCT but just the low frequency wing
of a microscopic peak that is the Fourier transform of a
process whose integral in the time domain is finite. One
possibility of such a process is thus a Debye-like process.
Since we have already seen earlier (see the discussion in
the context of Figs. 4 and 5) that it may well be that the
critical decay predicted by MCT is, at the temperatures
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FIG. 17. x¢, the value of the dynamic susceptibility at the
minimum, versus T — T. for 11 correlators (see Fig. 9 for
details) in a double logarithmic plot. Solid line: power law
with exponent 0.8.

WALTER KOB AND HANS C. ANDERSEN

FIG. 18. xZ, the value of the dynamic susceptibility at the
minimum, versus we, the location of this minimum for 11
correlators investigated (see Fig. 9 for details). Solid line:
power law with exponenet 1.0.

investigated here, still severely disturbed by the Debye-
like relaxation behavior occurring at short times, this
explanation is in accordance with our previous finding.

A further test of the theory is to investigate the connec-
tion between the frequency w. and wynqz, the frequency
of the a peak. MCT predicts this connection to be also
a power law but this time with an exponent b/(a + b)
which, assuming b =~ 0.49, is around 0.64 [see Eq. (15)].
Figure 19 shows that for our system the power law is
indeed observable but that the exponent is around 0.33
(solid line). This value can again be understood by as-
suming that the value of a is 1.0, or in other words that
the high frequency wing of the minimum is just the low
frequency part of the Debye-like microscopic peak, thus
giving an exponent of 0.33.

FIG. 19. w,, the location of the minimum in the dynamic
susceptibility, versus wmaz, the location of the a peak, for
11 correlators investigated (see Fig. 9 for details). Solid line:
power law with exponent 0.33.
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wmax

FIG. 20. Temperature dependence of wma=, the location
of the a peak, for 11 correlators investigated (see Fig. 9 for
details). Solid line: power law with exponent 2.5.

To conclude we test whether the prediction of the the-
ory that w,,q., should show a power-law dependence on
temperature with an exponent v [see Eq. (13)] holds for
this system. We tried to fit the low temperature behavior
of Wymaee With such a functional form and the result is pre-
sented in Fig. 20. From this figure we recognize that the
power law predicted by the theory indeed holds and that
also the exponent is in accordance with the one which fol-
lows from the prediction of MCT with the von Schweidler
exponent b = 0.49, giving v = 2.7. The critical temper-
ature is the same as the one found for the constant of
diffusion [1,7] and very close to the one found for the re-
laxation times and the one for x¥, which is in accordance
with the theory.

V. SUMMARY AND CONCLUSIONS

We have presented the results of a large scale molecular
dynamics computer simulation of a supercooled binary
Lennard-Jones mixture. The goal of our investigation
was to test whether MCT is able to give a correct de-
scription of the dynamics of this simple liquid at low tem-
peratures. In contrast to our earlier paper [1] in which
we mainly concentrated on the investigation of the diffu-
sion constant and the van Hove correlation function, we
focus in this work on the intermediate scattering func-
tion and the dynamic susceptibility. This allows us to
perform additional tests in order to investigate whether
MCT is able to describe the low temperature dynamics
of our system. The main difference between the work
reported here and earlier studies of the dynamics of su-
percooled liquids [8-12,14,15] is that (i) great care has
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been taken to equilibrate the system at all temperatures
investigated, since only in this case is a comparison with
MCT, an equilibrium theory, justified, and (ii) many dif-
ferent predictions of the theory are investigated in order
to see whether the theory actually gives a self-consistent
description of the low temperature dynamics of simple
liquids.

We find that at low temperatures F,(g,t) and F(g,t),
the incoherent and coherent intermediate scattering func-
tion, respectively, show the two step relaxation process
predicted by MCT. By scaling the intermediate scatter-
ing function by the a-relaxation time 7(g,T) we find that
the correlators for intermediate and low temperatures fall
onto a master curve in the a-relaxation regime. Thus
the time-temperature superposition principle predicted
by MCT holds for this system. As predicted by the the-
ory the early part of this master curve, which in the lan-
guage of MCT corresponds also to the late (3-relaxation
regime, is fitted very well by a power law, the so-called
von Schweidler law. Also the functional form predicted
by MCT for the master curve in the (3-relaxation regime,
the so-called 3 correlator, which takes into account the
corrections to the von Schweidler law, gives a very good
fit to the master curve in the region of the late 3 relax-
ation. From the point of view of the quality of the fit, the
two functional forms can be considered as equally good.
Thus for those correlators investigated the corrections to
the von Schweidler law do not seem to be very important
for this system. Computing the von Schweidler exponent
b from the exponent parameter A and comparing it to
the exponent b’ as determined from the power-law fit we
find that b and b’ are very close together for those cor-
relators and values of ¢ for which we made both kinds
of fits. Thus we can take b’ as a substitute for b and,
because of the connection between b and A [see Eq. (6)],
investigate the dependence of A on g and the type of cor-
relator by the investigation of the dependence of b’ on
these quantities. For values of ¢ in the range of ¢nae
and ¢,nin, the location of the first maximum and the first
minimum of the structure factor, respectively, the expo-
nent b’ shows only a weak dependence on q or the type of
correlator [7]. If ¢ is varied over a larger range, however,
one finds that b’ depends on ¢, which is in contradiction
with the prediction of MCT. On the other hand, it has to
be remembered that for ¢ very small and g very large the
theory predicts the existence of correction terms to the 3
correlator and thus these apparent deviations might just
be the result of these correction terms.

For the early part of the (3-relaxation regime the the-
ory predicts that the correlators should show a different
power law, the so-called critical decay [see Eq. (4)]. We
do not find any hint that, in the temperature range stud-
ied, our system shows such a time dependence. Rather
we find that the fast Debye-like relaxation behavior at
short times goes directly over to the slow decay of the
late B-relaxation regime. Thus it might be that for our
system the critical decay is just not existent at all or that,
in the temperature range we are able to investigate, the
critical decay is not visible because of the interference
with the dynamics at short times. It is interesting to
note that the numerical solution of the mode-coupling
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equations in which the full ¢ dependence and a reason-
able short time behavior were taken into account showed
that the observation of the critical decay is very diffi-
cult if the thermodynamic state of the system is not very
close to the critical point of MCT [22,23]. Thus the fact
that we are not able to see the critical decay should not
necessarily be seen as a failure of the theory.

It is interesting to note that the critical decay seems to
be more readily observable if the dynamics of the parti-
cles is not Newtonian but stochastic. This has been ob-
served, e.g., in a simulation by Léwen et al. of a colloidal
suspension in which the two different types of dynam-
ics were compared [11]. It was found that the stochastic
dynamics led to a relaxation behavior for which the ap-
proach to the plateau is much slower than the one for
the Newtonian dynamics. Also a recent simulation by
Baschnagel of a polymer system with stochastic dynam-
ics showed a very slow approach to the plateau and it
was demonstrated that in this time region the correla-
tors could be fitted well with a power law [33]. Very
recently Gotze and Sjogren were able to show within the
framework of MCT that a stochastic dynamics will lead
to a relaxation behavior of the correlators for which the
critical decay is more easily observable than for a New-
tonian dynamics, thus offering a theoretical explanation
for these observations [34].

The late part of the a-relaxation regime can be fitted
very well with a KWW law, in accordance with MCT.
The exponent 8 of the KWW law is significantly different
from b, the exponent of the von Schweidler law. Thus we
conclude that, in accordance with the theory, the von
Schweidler law is not the short time expansion of the
KWW law.

The height of the plateau, i.e., the nonergodicity pa-
rameter f., is strongly dependent on the wave vector q.
As predicted by the theory the nonergodicity parameter
of F4(q,t), often also called the Lamb-Méssbauer factor,
shows a Gaussian-like decay in g. Also the ¢ dependence
of the nonergodicity parameter for F(g,t), the so-called
Debye-Waller factor, is in qualitative accordance with the
prediction of the theory, in that it shows an oscillatory
behavior which is in phase with the structure factor.

The o-relaxation time 7(T") shows for all correlators in-
vestigated at low temperatures a power-law dependence
on T, as predicted by the theory. The critical tempera-
ture, as well as the critical exponent +, is independent of
the correlator. The critical temperature is very close to
the one we determined for the diffusion constant for both
types of particles [1,7], which is also in accordance with
the prediction of the theory. The critical exponent v of
the power law of 7(T") and the von Schweidler exponent
b fulfill the connection put forward by MCT between the
two quantities [see Eq. (10)], provided that one uses as
a value of b the ones found in the vicinity of g4, and
Qmin. However, the exponent is not the same as the one
we found for the critical behavior of the diffusion con-
stant [1,7], which is in conflict with the prediction of the
theory.

By investigating the ¢ dependence of the relaxation
time 7, we find that this quantity has a strong depen-
dence on q. We also demonstrate that 7 obeys the a-scale
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universality [see Eq. (9)], as predicted by the theory.

We show that the time-temperature superposition
principle can also be seen very well in the dynamic sus-
ceptibility x"’(¢,w), in that we show that at low temper-
atures the width of the a peak does not depend on T to
within the noise of the data.

By scaling frequency by we, the location of the mini-
mum in x"”(g,w), and scaling x”’ (w) by x¥(q) = x" (g, we),
we show that at low temperatures the curves for different
temperatures fall onto a master curve. Thus we demon-
strate that the scaling behavior predicted by MCT holds
for our model. A fit with the functional form of MCT
is not able to give a very good fit to this master curve
when the exponent parameter A is fixed to the value we
determined from fits to the correlators in the time do-
main. This discrepancy is, however, not a flaw of the
theory but traced back to an unpleasant property of the
Fourier transformation of a time correlation function. If
the parameter X is allowed to float, we are able to gener-
ate a satisfactory fit in the frequency domain, but with
the result that the A determined in this way is not op-
timal anymore in the time domain. Thus we conclude
that, if the theoretical curve does not give a good fit to
the high frequency side of the minimum, but only gives
a good fit on the low frequency side of the minimum,
the determination of A from fits to the master curve in
the frequency domain is problematic in the sense that it
might yield a wrong value of A.

In contrast to the prediction of MCT X! does not show
a power-law dependence on temperature with an expo-
nent 0.5 but rather with an exponent 0.8. However, the
critical temperature is, as predicted by the theory, very
close to the critical temperature for the diffusion constant
or the relaxation time.

To summarize, we can say that MCT is able to de-
scribe the dynamics of our system at low temperatures
in a surprisingly accurate way. There seem to be some
differences between the behavior of our system and the
predictions of the theory. However, all these discrep-
ancies can be rationalized by taking into account that
for values of ¢ significantly different from ¢,ne. and gmin
there are important corrections to the asymptotic results
of the theory and that the theory is valid only very close
to T.. Understanding whether the observed discrepan-
cies can really be understood within the framework of
the theory or whether the theory has reached its limit of
applicability is clearly of great interest, and we hope that
this question can be answered in the future. One possible
way to address this question is to solve numerically the
mode coupling equations, in which the full ¢ dependence
is taken into account, and compare these solutions with
the results of our simulation. This work is currently in
progress [35].
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